A disease state characterized by the presence of airflow obstruction due to ✓ chronic bronchitis (and) or ✓ emphysema; the airflow obstruction is generally progressive, may be accompanied by airway hyperreactivity, and may be partially reversible.
Pathogenesis of COPD

- Noxious particles & gases
- Antioxidants
- Lung inflammation
- Antiproteinases
- Oxidative stress
- Proteinases
- COPD pathology

Risk factors for COPD

Host factors
- Gene (e.g., alpha-1 antitrypsin deficiency)
- Airway hyperresponsiveness
- Lung Growth

Exposures
- Smoking
- Occupational dusts and chemicals
- Air pollution
- Infections
- Asthma / bronchial hyperreactivity

Aging Populations

Mechanism underlying airflow limitation in COPD

- **INFLAMMATION**
 - Small airway disease
 - Airway inflammation
 - Airway remodeling
 - Parenchymal destruction
 - Loss of alveolar attachments
 - Decrease of elastic recoil

- **AIRFLOW LIMITATION**
 - Completely reversible
 - Airflow limitation
 - Completely irreversible
Key indicators for considering a Dx of COPD

- A clinical diagnosis of COPD should be considered in any patient who has dyspnea, chronic cough or sputum production, and a history of exposure to risk factors for the disease.

- Spirometry is required to make the diagnosis; the presence of a post-bronchodilator FEV₁/FVC < 0.70 confirms the presence of persistent airflow limitation and thus of COPD.

Diagnosis of COPD

- Symptoms of COPD
 - Dyspnea: Progressive, persistent and worse with exercise.
 - Chronic cough: May be intermittent and may be unproductive.
 - Chronic sputum production: COPD patients commonly cough up sputum.
 - Spirometry: FEV₁/FVC ratio < 0.70 PLUS an FEV₁ < 80% predicted that is incompletely reversible with inhaled bronchodilator.
 - Absence of an alternative explanation for the symptoms and airflow limitation (Diff Dx)

Assess symptoms

- Clinical COPD Questionnaire (CCQ): Self-administered questionnaire developed to measure clinical control in patients with COPD (http://www.ccq.nl).
- Breathlessness Measurement using the Modified British Medical Research Council (mMRC) Questionnaire: relates well to other measures of health status and predicts future mortality risk.
mMRC (Modified Medical Research Council Dyspnea Score)

- Stage 0: No breathlessness
- Stage 1: Breathlessness on effort, e.g., climbing stairs or dressing
- Stage 2: Breathlessness on mild exertion, e.g., walking up a steep hill
- Stage 3: Breathlessness on walking at a normal pace, even on level ground
- Stage 4: Breathlessness at rest or on minimal exertion

CAT (COPD Assessment Test)

The CAT (COPD Assessment Test) is a 10-question tool to assess the impact of COPD on patients. Each question is scored on a scale of 1 to 5, with higher scores indicating greater impact. The total score ranges from 0 to 40, with scores:
- Less than 10: Minimal impact
- 10 or more: Moderate to severe impact

Global Strategy for Diagnosis, Management and Prevention of COPD

- Assess symptoms
- Assess degree of airflow limitation

Use spirometry for grading severity according to spirometry, using four grades split at 80%, 50% and 30% of predicted value.

Classification of severity of airflow limitation (based on postbronchodilator FEV₁)

In patients with FEV₁/FVC <0.70:
- **Stage I**: mild
 - FEV₁ ≥80% predicted
- **Stage II**: moderate
 - 50% ≤FEV₁ <80% predicted
- **Stage III**: severe
 - 30% ≤ FEV₁ < 50% predicted
- **Stage IV**: very severe
 - FEV₁ < 30% predicted
Assess symptoms
Assess degree of airflow limitation
Assess risk of exacerbations

Use history of exacerbations and spirometry.

- ≥ 2 exacerbations within the last year
- or an FEV₁ < 50% of predicted value are indicators of high risk.
- ≥ 1 hospitalization for a COPD exacerbation – high risk.

Assess risk of exacerbations next

If GOLD 3 or 4 or ≥ 2 exacerbations per year or ≥ 1 leading to hospital admission:
High Risk (C or D)

If GOLD 1 or 2 and only 0 or 1 exacerbations per year (not leading to hospital admission):
Low Risk (A or B)
Global Strategy for Diagnosis, Management and Prevention of COPD

Combined Assessment of COPD

<table>
<thead>
<tr>
<th>Patient</th>
<th>Characteristic</th>
<th>Spirometric Classification</th>
<th>Exacerbations per year</th>
<th>CAT</th>
<th>mMRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Low Risk, Less Symptoms</td>
<td>GOLD 1-2</td>
<td>≤ 1</td>
<td>< 10</td>
<td>0-1</td>
</tr>
<tr>
<td>B</td>
<td>Low Risk</td>
<td>GOLD 1-2</td>
<td>≤ 1</td>
<td>≥ 10</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>High Risk, Less Symptoms</td>
<td>GOLD 3-4</td>
<td>≥ 2</td>
<td>< 10</td>
<td>0-1</td>
</tr>
<tr>
<td>D</td>
<td>High Risk, More Symptoms</td>
<td>GOLD 3-4</td>
<td>≥ 2</td>
<td>≥ 10</td>
<td>2</td>
</tr>
</tbody>
</table>

CAT < 10
CAT ≥ 10
mMRC 0-1
mMRC 2-2

Assess COPD Comorbidities

COPD patients are at increased risk for:
- Cardiovascular diseases
- Osteoporosis
- Respiratory infections
- Anxiety and Depression
- Diabetes
- Lung cancer
- Bronchiectasis

These comorbid conditions may influence mortality and hospitalizations and should be looked for routinely, and treated appropriately.

Differential Diagnosis: COPD and Asthma

COPD
- Onset in mid-life
- Symptoms slowly progressive
- Long smoking history

Asthma
- Onset early in life (often childhood)
- Symptoms vary from day to day
- Symptoms worse at night/early morning
- Allergy, rhinitis, and/or eczema also present
- Family history of asthma

Therapeutic Options: Key Points

- Smoking cessation has the greatest capacity to influence the natural history of COPD. Health care providers should encourage all patients who smoke to quit.
- All COPD patients benefit from regular physical activity and should repeatedly be encouraged to remain active.
Therapeutic Options: Key Points

- Appropriate pharmacologic therapy can
 - reduce COPD symptoms
 - reduce the frequency and severity of exacerbations
 - improve health status and exercise tolerance.
- None of the existing medications for COPD has been shown conclusively to modify the long-term decline in lung function.

<table>
<thead>
<tr>
<th>Pharmacotherapies: Bronchodilators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronchodilator medications are central to the symptomatic management of COPD.</td>
</tr>
<tr>
<td>Bronchodilators are prescribed on an as-needed or on a regular basis to prevent or reduce symptoms.</td>
</tr>
<tr>
<td>The principal bronchodilator treatments are beta<sub>2</sub>-agonists, anticholinergics, theophylline or combination therapy.</td>
</tr>
<tr>
<td>The choice of treatment depends on the availability of medications and each patient’s individual response in terms of symptom relief and side effects.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pharmacotherapies: Bronchodilators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-acting inhaled bronchodilators are convenient and more effective for symptom relief than short-acting bronchodilators.</td>
</tr>
<tr>
<td>Long-acting inhaled bronchodilators reduce exacerbations and related hospitalizations improve symptoms and health status.</td>
</tr>
<tr>
<td>Combining bronchodilators of different pharmacological classes may improve efficacy and decrease the risk of side effects compared to increasing the dose of a single bronchodilator.</td>
</tr>
</tbody>
</table>
Bronchodilators: Theophylline

- **Mode of action**: smooth muscle relaxation due to phosphodiesterase inhibition (PDE-IV), increases diaphragmatic contractility, may reduce inflammation.
- All studies that have shown efficacy of theophylline in COPD were done with slow-release preparations.
- Theophylline is less effective and less well tolerated than inhaled long-acting bronchodilators and is not recommended if those drugs are available and affordable.

Addition of theophylline to salmeterol produces a greater increase in FEV₁ and breathlessness than salmeterol alone.

Low dose theophylline reduces exacerbations but does not improve post-bronchodilator lung function.

Roflumilast – highly selective PDE₄ inhibitor

- Theophylline – nonselective weak PDE inhibitor มีข้อจำกัด: safety and capability of drug absorbing.
- PDE-4 = subtype ของ PDE พบมากในบริเวณที่มีการอักเสบ และกล้ามเนื้อเรียบของทางเดินหายใจ การยับยั้ง PDE-4 แบบจำเพาะจะจำกัดที่ mast cells และ neutrophils.
- MOA: เพิ่มระดับของ cAMP โดยยับยั้งเอนไซม์ที่ทำลาย cAMP, ยับยั้ง mediator ที่ถูกเกิดการอักเสบทางเดินหายใจ.

severe and very severe COPD (GOLD 3 and 4) and a history of exacerbations and chronic bronchitis

SE: ปวดศีรษะ คลื่นไส้ ท้องเสีย สับสน
Tiotropium bromide

Specific M1 and M3 Muscarinic Blockade

- **Indication:** maintenance Tx of COPD
- **not suitable for relief of acute bronchospasm**
- **Side effects:**
 - Tiotropium, like ipratropium (quaternary ammonium compounds), is poorly absorbed from the GI tract and has very low systemic bioavailability. --- wide therapeutic margin
 - dryness of the mouth, a typical anticholinergic effect

Tiotropium bromide

- **GOLD guideline:** recommend for moderate or severe COPD use of regular tx of long acting bronchodilator, including tiotropium, rather than short acting bronchodilator
- tiotropium 18 mcg OD with or without salmeterol
- should not be use together with other ipratropium
- DPI (Handihaler)

Tiotropium

- 470 patients - stable COPD
- 3 month, randomized, double blind, once daily tiotropium vs. placebo

Conclusions:
- Increased FEV1 and FVC
- No tachyphylaxis
- Decreased rescue albuterol
- Decreased wheezing, SOB
- Dry mouth in 9.3%

Casaburi et al. CHEST 118:1294, 2000

Tiotropium

- 1207 patients, double blind, randomized trial,
- qd tiotropium vs. bid salmeterol vs. placebo

Conclusions: Tiotropium
- Fewer exacerbations
- Increased time to first exacerbation
- Fewer admissions
- Increased QOL

Tiotropium versus LABA for stable COPD

7 clinical studies totaling 12,223 patients with COPD
LABA: formoterol, salmeterol, indacaterol

Tiotropium was more effective than LABAs as a group in….
- preventing COPD exacerbations and disease-related hospitalisations
- no statistical differences between groups in overall hospitalisation rates or mortality during the study periods (3-12 months).

Inhaled Corticosteroids (ICS)

- Regular treatment with ICS:
 - improves symptoms, lung function and QoL
 - reduces frequency of exacerbations for COPD patients with an FEV$_1$ < 60% predicted.
 - ICS therapy is associated with an increased risk of pneumonia.

Combination: ICS + bronchodilator

- To reduce the frequency of exacerbation
 → ICS ให้ร่วมกับ LABA
 - more effective than the individual components in reducing exacerbations and improving LF
 - Combination therapy is associated with an increased risk of pneumonia.
 - LABA/ICS combination + tiotropium appears to provide additional benefits.

Meta-analysis: efficacy of ICS and LABA in a single inhaler with mono-component LABA alone in adults with COPD

14 trials involving 11,794 people with COPD

- ICS/LABA inhalers reduced (compared with their LABA component alone)
 - frequency of exacerbations an average of one exacerbation per year on a LABA to an average of 0.76 exacerbations per year on a combined inhaler.
 - risk of mortality was similar between the treatments
Meta-analysis: efficacy of ICS and LABA in a single inhaler with mono-component LABA alone in adults with COPD

- There was evidence of an overall increased risk of pneumonia with combined inhalers, from around 3/100 people/year on LABA to 4/100/year on combined inhalers.
- There was no significant difference between treatments in terms of hospitalisations.

Systemic corticosteroids

- From meta-analysis, patients with stable COPD who received oral corticosteroid had a mean FEV₁ > 20% improvement compared to placebo, 10%.

- Chronic treatment with systemic corticosteroids should be avoided (unfavorable benefit-to-risk ratio).

Global Strategy for Diagnosis, Management and Prevention of COPD

Manage Stable COPD: Key Points

- Identification and reduction of exposure to risk factors are important steps in prevention and treatment.
- Individualized assessment of symptoms, airflow limitation, and future risk of exacerbations should be incorporated into the management strategy.
- Pharmacologic therapy is used to reduce symptoms, reduce frequency and severity of exacerbations, and improve health status and exercise tolerance.

Global Strategy for Diagnosis, Management and Prevention of COPD

Manage Stable COPD: Key Points

- LABA and LAMA are preferred over short-acting formulations.
- Based on efficacy and side effects, inhaled bronchodilators are preferred over oral bronchodilators.
- Long-term treatment with ICS added to long-acting bronchodilators is recommended for patients with high risk of exacerbations.
Long-term monotherapy with OSC or ICS is not recommended in COPD.

The phosphodiesterase-4 inhibitor roflumilast may be useful to reduce exacerbations for patients with FEV$_1$ $<$ 50% of predicted, chronic bronchitis, and frequent exacerbations.

Global Strategy for Diagnosis, Management and Prevention of COPD

Manage Stable COPD: Key Points

- Influenza vaccines can reduce serious illness.
- Pneumococcal polysaccharide vaccine is recommended for COPD patients (≥65 years) and for COPD patients younger than age 65 with an FEV$_1$ < 40% predicted.
- The use of antibiotics other than for treating infectious exacerbations of COPD and other bacterial infections, is currently not indicated.
- Mucolytics: Patients with viscous sputum may benefit from mucolytics; overall benefits are very small.
- Antitussives: Not recommended.

Global Strategy for Diagnosis, Management and Prevention of COPD

Therapeutic Options: Other Pharmacologic Treatments

Global Strategy for Diagnosis, Management and Prevention of COPD

Manage Stable COPD: Non-pharmacologic

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Essential</th>
<th>Recommended</th>
<th>Depending on local guidelines</th>
<th>Other Possible Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Smoking cessation</td>
<td>Physical activity</td>
<td>Flu vaccination Pneumococcal vaccination</td>
<td></td>
</tr>
<tr>
<td>B, C, D</td>
<td>Smoking cessation Pulmonary rehabilitation</td>
<td>Physical activity</td>
<td>Flu vaccination Pneumococcal vaccination</td>
<td></td>
</tr>
</tbody>
</table>
The most common causes of COPD exacerbations are **viral upper respiratory tract infections** and infection of the tracheobronchial tree.

SABA with or without SAMA are usually the preferred bronchodilators for tx of an exacerbation.

Systemic corticosteroids and antibiotics can shorten recovery time, improve lung function and arterial hypoxemia (PaO_2), and reduce the risk of early relapse, tx failure, and length of hospital stay.

Antibiotics should be given to patients with:

- Three cardinal symptoms: increased dyspnea, increased sputum volume, and increased sputum purulence.
- Who require mechanical ventilation.

Oxygen: titrate to improve the patient’s hypoxemia with a target saturation of 88-92%.

Manage Exacerbations: Assessments

Arterial blood gas measurements (in hospital): with or without $\text{PaCO}_2 > 6.7$ kPa when breathing room air indicates respiratory failure.

- **Chest radiographs:** useful to exclude alternative diagnoses.
- **ECG:** may aid in the diagnosis of coexisting cardiac problems
- **Whole blood count:** identify polycythemia, anemia or bleeding.
- **Purulent sputum** during an exacerbation: indication to begin empirical antibiotic treatment.
- **Biochemical tests:** detect electrolyte disturbances, diabetes, and poor nutrition.
- **Spirometric tests:** not recommended during an exacerbation.

Summary

- Prevention of COPD is to a large extent possible and should have high priority.
- Spirometry is required to make the diagnosis of COPD; the presence of a post-bronchodilator $\text{FEV}_1/\text{FVC} < 0.70$ confirms the presence of persistent airflow limitation and thus of COPD.
- Combined assessment of symptoms and risk of exacerbations is the basis for non-pharmacologic and pharmacologic management of COPD.
- Treat COPD exacerbations to minimize their impact and to prevent the development of subsequent exacerbations.